Attosecond Control in Photoionization of D₂

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/388/2/022028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 200.24.16.228
This content was downloaded on 24/01/2017 at 19:21

Please note that terms and conditions apply.

You may also be interested in:

Theory of strong-field attosecond transient absorption
Mengxi Wu, Shaohao Chen, Seth Camp et al.

Electron streaking and dissociation in laser-assisted photoionization of molecular hydrogen
Alicia Palacios, Alberto González-Castrillo and Fernando Martín

A Method for Distinguishing Attosecond Single Pulse from Attosecond Pulse Train
Huo Yi-Ping, Zeng Zhi-Nan, Li Ru-Xin et al.

Control of quantum paths in high-order harmonic generation via a \(\omega + 3\omega \) bichromatic laser field
Wei Cao, Peixiang Lu, Pengfei Lan et al.

Atomic delay in helium, neon, argon and krypton
Caryn Palatchi, J M Dahlström, A S Kheifets et al.

Measurement of the autoionization lifetime of the energetically lowest doubly excited Q1 1\(\Sigma_u^+ \) state in H₂ using electron ejection asymmetry
Andreas Fischer, Alexander Sperl, Philipp Cörlin et al.

Role of electron wavepacket interference in the optical response of helium atoms
Matteo Lucchini, Jens Herrmann, André Ludwig et al.

Attosecond quantum-beat spectroscopy in helium
Niranjan Shivaram, Xiao-Min Tong, Henry Timmers et al.

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy
J Herrmann, M Lucchini, S Chen et al.
Attosecond Control in Photoionization of D$_2$

J F Pérez-Torresa, F Kelkensbergb, W Siub, F Moralesa,c, G Gademannb, A Rouzéea,c, P Johnssond, M Lucchinie, F Calegarye, J L Sanz-Vicariof, F Martína,g, M J J Vrakkingb,c

aDepartamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
bFOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
cMax-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin, Germany
dDepartment of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
eCNR-INFM, National Laboratory for Ultrafast and Ultraintense Optical Science, Department of Physics, Politecnico of Milan, Piazza L. da Vinci 32, 20133 Milano, Italy
fInstituto de Física Atómica y Molecular. Instituto de Física. Universidad de Antioquia. Medellín, Colombia
gGrupo de Física Atómica y Molecular. Instituto de Física. Universidad de Antioquia. Medellín, Colombia

Synopsis

We study the dissociative photoionization of D$_2$ by an attosecond pulse train (APT) in the presence of a near-infrared (IR) field. Strong oscillations in the D$^+$ kinetic energy release spectrum with a half period of the optical cycle of the infrared field are observed and attributed to interferences between ionization pathways involving different harmonic orders of the APT due to the IR-induced coupling between the 1s$_g$ and 2p$_u$ ionization channels.

With the advent of time-resolved spectroscopy with attosecond resolution, ultrafast electron dynamics in atoms and molecules becomes an attractive field of research. Attosecond spectroscopy is based on the generation of attosecond light pulses by using high-order harmonic generation (HHG). Nowadays, attosecond pulses are generated in the form of attosecond pulse trains (APT) [1] as well as isolated attosecond pulses [2]. Successful applications of attosecond spectroscopy in atoms [3] and, more recently, in molecules [4] have been demonstrated. In our previous work [4], electron localization in the ion fragments was resolved with attosecond resolution in the dissociative photoionization of H$_2$, initiated by a single attosecond pulse and probed by a few-cycle infrared (IR) field.

Here we use instead an APT laser pumping, built from odd harmonics H$_{11}$ to H$_{27}$ (centered at H$_{19}$) of a parent 780 nm IR field, and report the effects on the kinetic energy release (KER) spectrum for D$^+$ fragments ejected along the laser polarizator axis. Strong oscillations in the fragment ion yields as a function of the pump-probe time delay are observed and confirmed by theoretical calculations (Figure 1). The APT firstly ionizes D$_2$ into continuum states of both 1s$_g$ and 2p$_u$ channels located at the IR-odd harmonics. Q$_1$S^+_u, doubly excited states are also simultaneously excited. The delayed IR field then couples continuum states, within the same ionization channel or between different channels.

The absorption/emission due to 1s$_g \rightarrow$ 2p$_u$ IR-couplings results in RABBITT-like sidebands located at the even harmonics in the photoelectron spectrum. Oscillations in the D$^+$ KER are explained in terms of quantum interferences between ionization pathways contributing to these sidebands.

![Figure 1](image-url)

Figure 1. D$^+$ KER spectrum as a function of the delay between the APT and the IR pulse. (a) Experiment (b) Theory.

References